在工作中Redis已经成为必备的一款高性能的缓存数据库,但是在实际的使用过程中,我们常常会遇到两个常见的问题,也就是文章标题所说的大 key
与热 key
。
大 key
指的是一个键中包含了大量的数据。(总结一个字就是大
)
占用空间:大key
通常指的是一个键包含了大量的数据,使得该键对应值的占用的内存超出了正常范围。这个大小的阈值并不是固定的,而是相对于 Redis 实例的可用内存而言。当一个键的大小超出了 Redis 实例可用内存时,就可以认为它是一个大key
。
操作耗时:如果对一个 key 的操作所需的时间过长,导致性能下降或者影响其他请求的处理速度,也可以说这个 key 是 大key
。因为这种情况通常是由于该 key 下包含了大量的数据。
热 key
指的是频繁访问的键。(总结就是热
,访问频繁。)
频繁访问:在某一段时间内被频繁访问的 key 就是 热key
。
业务方面:比如商城促销的场景下,某个商品的缓存可能就会成为 热key
。这种情况下 热key
反应的不仅是该键的访问频率高,还反映了用户对某个业务功能的热度。
性能方面:热key
的频繁访问造成 Redis 的 CPU 占用率过高,造成响应时间延长或者请求阻塞,从而造成系统崩溃。
key
的大与不大,热与不热要根据自己的业务,从实际情况进行评估。
大 key
的影响大key
的操作进而会阻塞其他请求的处理,从而影响系统性能。AOF
与RDB
都会因为该 大key
耗费更多的时间,从而延迟持久化时间,分布式环境下甚至会造成缓存不一致。大key
在进行网络传输时会增加网络传输的延迟,在分布式环境下进行数据同步时可能会造成数据的不一致。热 key
的影响热key
,所以 CPU 一直占用,进而导致Redis实例的CPU负载增加。热key
的存在可能导致请求队列中其他的请求被阻塞。热key
,其他的请求被阻塞了造成响应时间延长。大key
与 热key
都会给 Redis 实例造成一系列的影响,如内存占用过高,CPU 负载增加,持久化时间变长,性能下降等。
大 key
产生的原因产生 大key
的原因有很多种,下面咱就一起看一下工作中经常遇到的这几种。
存储了大量数据也是我们经常遇到 大key
的最多的原因了。
比如 String
类型直接保存了一个大的文本或者二进制数据;Hash
结构中存储大量的键值对。
代码解读复制代码SET zuiyu_large_text_key "very large text content..."
代码解读复制代码HMSET zuiyu_large_hash_key field1 value1 field2 value2 ... fieldN valueN
缓存时间设置不合理这个造成 大key
的原因大概是个隐藏挺深的老 bug,有的业务场景,使用 Redis 缓存数据,业务是定时往该 key 上写数据,由于该 key 是没有设置缓存时间的造成这个 key 随着时间的流逝,占用的内存越来越多,对于该点,只需要设置一个合理的过期时间即可。
前提是多次写入
不是覆盖
,而是追加
才会有该问题。text
代码解读复制代码
SETEX zuiyu_key_with_expiry value 3600 # 设置过期时间为3600秒
在使用 List 数据结构存储数据时,重复的添加数据,造成该 key 越来越大,实际上业务是不需要有重复的数据存在的。
代码解读复制代码LPUSH zuiyu_large_list_key value
大key
的产生根本原因就是在一个 key 下面存储的数据多了。
热 key
产生的原因热key
的产生一般意味着系统访问火爆了,但是火爆的只是其中一个点或者n个点。类似微博中某个明星的瓜,当上头条的时候,大量的人去访问,造成了该明星所对应的 key 成为 热key
。
某些业务场景,单位时间内一直频繁的对 key 进行更新,该 key 也会成为 热key
。
类似于第一中的热门数据,产生了热门数据,该数据对应的热门关键词也被大量的用户去搜索,造成该关键词被频繁访问,最终导致该 key 也称为 热key
。
热key
的产生无外乎热门数据,热门数据产生的热门关键词以及对同一个 key 在某段时间内的频繁访问。
大key
进行拆分为多个 小key
大key
进行清理将热点数据分散到不同的Redis实例,提升系统的吞吐量。
在系统启动或者活动高峰开启之前进行缓存预热,提前将需要的数据加载到缓存,减少热点数据首次访问的时间。
避免大量的key同一时间批量失效,造成缓存雪崩与缓存穿透。
使用布隆过滤器进行缓存请求过滤,防止无效请求进入到缓存层。
针对 大key
我们要尽可能的避免同一个 key 下大量的数据。针对 热key
我们要合理设置过期时间,增加布隆过滤器等技术实现无效请求过滤,对即将到来的数据进行缓存预热、热点数据分片处理。